INTERNATIONAL A LEVEL

Statistics 3

Exercise 5A

1 a The data in the scatter graph appear to be linear, and the product moment correlation coefficient is more suitable for linear correlation.
b Spearman's rank correlation coefficient is easier to calculate.

2 The data is non-linear.

3 The number of attempts taken to score a free throw is not normally distributed (it is geometric), so the researcher should use Spearman's rank correlation coefficient.

4 a The data are ranked. There are no tied ranks. The table shows d and d^{2} for each pair of ranks:

$\boldsymbol{r}_{\boldsymbol{x}}$	$\boldsymbol{r}_{\boldsymbol{y}}$	\boldsymbol{d}	$\boldsymbol{d}^{\mathbf{2}}$
1	3	-2	4
2	2	0	0
3	1	2	4
4	5	-1	1
5	4	1	1
6	6	0	0
Total			
	10		

$r_{s}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}=1-\frac{6 \times 10}{6\left(6^{2}-1\right)}=1-0.28571 \ldots=0.714$ (3 s.f.)
There is limited evidence of positive correlation between the pairs of ranks. This value is between weak and strong positive correlation.
b There are no tied ranks. The table shows d and d^{2} for each pair of ranks:

$\boldsymbol{r}_{\boldsymbol{x}}$	$\boldsymbol{r}_{\boldsymbol{y}}$	\boldsymbol{d}	$\boldsymbol{d}^{\mathbf{2}}$
1	2	-1	1
2	1	1	1
3	4	-1	1
4	3	1	1
5	5	0	0
6	8	-2	4
7	7	0	0
8	9	-1	1
9	6	3	9
10	10	0	0
Total			
		18	

$r_{s}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}=1-\frac{6 \times 18}{10\left(10^{2}-1\right)}=1-0.10909 \ldots=0.891$ (3 s.f.)
There is fairly strong positive correlation between the pairs of ranks.

INTERNATIONAL A LEVEL

Statistics 3

4 c There are no tied ranks. The table shows d and d^{2} for each pair of ranks:

$\boldsymbol{r}_{\boldsymbol{x}}$	$\boldsymbol{r}_{\boldsymbol{y}}$	\boldsymbol{d}	$\boldsymbol{d}^{\mathbf{2}}$
5	5	0	0
2	6	-4	16
6	3	3	9
1	8	-7	49
4	7	-3	9
3	4	-1	1
7	2	5	25
8	1	7	49
Total			
	158		

$r_{s}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}=1-\frac{6 \times 158}{8\left(8^{2}-1\right)}=1-1.88095 \ldots=-0.881$ (3 s.f.)
There is fairly strong negative correlation between the pairs of ranks.
5 a The data is positively correlated and ranked, therefore $r_{s}=1$.
b The data is clearly correlated, and has a negative trend, therefore this case corresponds to the only negative value, $r_{s}=-1$.
c The data is strongly correlated, and ranked with only one outlier, so r_{s} is close to 1, i.e. $r_{s}=0.9$.
d This data set is more scattered than the others and there is no clear trend, so $r_{s}=0.5$.
6 a The table shows the ranking for goals scored $\left(r_{g}\right)$ (the league position is the ranking in the league r_{l}) and then d and d^{2} for each pair of ranks:

Goals	$\boldsymbol{r}_{\boldsymbol{g}}$	$\boldsymbol{r}_{\boldsymbol{l}}$	\boldsymbol{d}	$\boldsymbol{d}^{\mathbf{2}}$
49	1	1	0	
44	2	2	0	0
43	3	3	0	0
36	6	4	2	4
40	4	5	-1	1
39	5	6	-1	1
29	9	7	2	4
21	12	8	4	16
28	10	9	1	1
30	8	10	-2	4
33	7	11	4	16
26	11	12	1	1
		Total		

INTERNATIONAL A LEVEL

Statistics 3

6 b There are no tied ranks, and $d^{2}=48$, so:

$$
r_{s}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}=1-\frac{6 \times 48}{12\left(12^{2}-1\right)}=1-0.16783 \ldots=0.832(3 \text { s.f. })
$$

This shows fairly strong positive correlation between the pairs of ranks. This suggests that the more goals a team scores, the higher its league position is likely to be.

7 There are no tied ranks. The table shows d and d^{2} for each pair of ranks:

$\boldsymbol{r}_{\boldsymbol{Q}}$	$\boldsymbol{r}_{\boldsymbol{T}}$	\boldsymbol{d}	$\boldsymbol{d}^{\mathbf{2}}$
1	1	0	0
2	2	0	0
3	5	-2	4
4	6	-2	4
5	4	1	1
6	3	3	9
7	8	-1	1
8	7	1	1
Total			
	20		

$r_{s}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}=1-\frac{6 \times 20}{8\left(8^{2}-1\right)}=1-0.23809 \ldots=0.762$ (3 s.f.)
There is fairly strong positive correlation between the pairs of ranks. This suggests the trainee vet is rating the rabbits for overall health in a similar way to the qualified vet.

8 a The marks are discrete values drawn from a specified scale in order to rank the competitors.
b The table shows the ranks of each judge and d and d^{2} for each pair of ranks:

$\boldsymbol{J}_{\mathbf{1}}$	$\boldsymbol{J}_{\mathbf{2}}$	$\boldsymbol{r}_{\mathbf{J}}$	$\boldsymbol{r}_{\mathbf{J} 2}$	\boldsymbol{d}	$\boldsymbol{d}^{\mathbf{2}}$
7.8	8.1	4	4	0	0
6.6	6.8	9	8	1	1
7.3	8.2	7	3	4	16
7.4	7.5	6	7	-1	1
8.4	8.0	3	5	-2	4
6.5	6.7	10	9	1	1
8.9	8.5	1	1	0	0
8.5	8.3	2	2	0	0
6.7	6.6	8	10	-2	4
7.7	7.8	5	6	-1	1

$r_{s}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}=1-\frac{6 \times 28}{10\left(10^{2}-1\right)}=1-0.16969 \ldots=0.830$ (3 s.f.)
There is a strong positive correlation between the marks, hence the two judges agree well.

INTERNATIONAL A LEVEL

Statistics 3

8 c Now there is a tied rank for the value 7.7 for competitors A and J, and we should give each of the equal values a rank equal to the average of their ranks, which would be 4.5 .

9 a The scores are used to rank the participants, and are not likely to be normally distributed.
b The table shows the ranks of each judge (using averages where scores are tied in rank) and d and d^{2} for each pair of ranks:

$\boldsymbol{J}_{\mathbf{1}}$	$\boldsymbol{J}_{\mathbf{2}}$	$\boldsymbol{r}_{\mathbf{J} \mathbf{1}}$	$\boldsymbol{r}_{\mathbf{J} \mathbf{2}}$	\boldsymbol{d}	$\boldsymbol{d}^{\mathbf{2}}$
4.5	5.2	1	5	-4	16
5.1	4.8	2	1	1	1
5.2	4.9	3.5	2	1.5	2.25
5.2	5.1	3.5	4	-0.5	0.25
5.4	5.0	5	3	2	4
5.7	5.3	6	6	0	0
5.8	5.4	7	7	0	0
Total					
23.5					

$$
r_{s}=1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)}=1-\frac{6 \times 23.5}{7\left(7^{2}-1\right)}=1-0.41964 \ldots=0.580(3 \text { s.f. })
$$

c Both show positive correlation, but the judges agree more on the second dive.

