## **Statistics 3** Solution Bank



#### **Exercise 5A**

- 1 a The data in the scatter graph appear to be linear, and the product moment correlation coefficient is more suitable for linear correlation.
  - **b** Spearman's rank correlation coefficient is easier to calculate.
- 2 The data is non-linear.
- **3** The number of attempts taken to score a free throw is not normally distributed (it is geometric), so the researcher should use Spearman's rank correlation coefficient.
- 4 a The data are ranked. There are no tied ranks. The table shows d and  $d^2$  for each pair of ranks:

| <b>r</b> <sub>x</sub> | <i>r</i> <sub>y</sub> | d     | $d^2$ |
|-----------------------|-----------------------|-------|-------|
| 1                     | 3                     | -2    | 4     |
| 2                     | 2                     | 0     | 0     |
| 3                     | 1                     | 2     | 4     |
| 4                     | 5                     | -1    | 1     |
| 5                     | 4                     | 1     | 1     |
| 6                     | 6                     | 0     | 0     |
|                       |                       | Total | 10    |
| (Σ                    | - 12                  | < 10  |       |

$$r_s = 1 - \frac{6\sum a^2}{n(n^2 - 1)} = 1 - \frac{6 \times 10}{6(6^2 - 1)} = 1 - 0.28571... = 0.714 (3 \text{ s.f.})$$

There is limited evidence of positive correlation between the pairs of ranks. This value is between weak and strong positive correlation.

**b** There are no tied ranks. The table shows d and  $d^2$  for each pair of ranks:

| r <sub>x</sub> | ry    | d     | <i>d</i> <sup>2</sup> |
|----------------|-------|-------|-----------------------|
| 1              | 2     | -1    | 1                     |
| 2              | 1     | 1     | 1                     |
| 3              | 4     | -1    | 1                     |
| 4              | 3     | 1     | 1                     |
| 5              | 5     | 0     | 0                     |
| 6              | 8     | -2    | 4                     |
| 7              | 7     | 0     | 0                     |
| 8              | 9     | -1    | 1                     |
| 9              | 6     | 3     | 9                     |
| 10             | 10    | 0     | 0                     |
|                |       | Total | 18                    |
| 65             | $d^2$ | 6×18  |                       |

$$r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 18}{10(10^2 - 1)} = 1 - 0.10909... = 0.891 (3 \text{ s.f.})$$

There is fairly strong positive correlation between the pairs of ranks.

# **Statistics 3** Solution Bank

4 c There are no tied ranks. The table shows d and  $d^2$  for each pair of ranks:

| ľ <sub>x</sub> | $r_y$ | d     | $d^2$ |
|----------------|-------|-------|-------|
| 5              | 5     | 0     | 0     |
| 2              | 6     | -4    | 16    |
| 6              | 3     | 3     | 9     |
| 1              | 8     | -7    | 49    |
| 4              | 7     | -3    | 9     |
| 3              | 4     | -1    | 1     |
| 7              | 2     | 5     | 25    |
| 8              | 1     | 7     | 49    |
|                |       | Total | 158   |

$$r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 158}{8(8^2 - 1)} = 1 - 1.88095... = -0.881 (3 \text{ s.f.})$$

There is fairly strong negative correlation between the pairs of ranks.

- **5** a The data is positively correlated and ranked, therefore  $r_s = 1$ .
  - **b** The data is clearly correlated, and has a negative trend, therefore this case corresponds to the only negative value,  $r_s = -1$ .

P Pearson

- **c** The data is strongly correlated, and ranked with only one outlier, so  $r_s$  is close to 1, i.e.  $r_s = 0.9$ .
- **d** This data set is more scattered than the others and there is no clear trend, so  $r_s = 0.5$ .
- 6 a The table shows the ranking for goals scored  $(r_g)$  (the league position is the ranking in the league  $r_l$ ) and then d and  $d^2$  for each pair of ranks:

| Goals | rg | r <sub>l</sub> | d     | $d^2$ |
|-------|----|----------------|-------|-------|
| 49    | 1  | 1              | 0     |       |
| 44    | 2  | 2              | 0     | 0     |
| 43    | 3  | 3              | 0     | 0     |
| 36    | 6  | 4              | 2     | 4     |
| 40    | 4  | 5              | -1    | 1     |
| 39    | 5  | 6              | -1    | 1     |
| 29    | 9  | 7              | 2     | 4     |
| 21    | 12 | 8              | 4     | 16    |
| 28    | 10 | 9              | 1     | 1     |
| 30    | 8  | 10             | -2    | 4     |
| 33    | 7  | 11             | 4     | 16    |
| 26    | 11 | 12             | 1     | 1     |
|       |    |                | Total | 48    |

### **Statistics 3** Solution Bank



$$r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 48}{12(12^2 - 1)} = 1 - 0.16783... = 0.832$$
 (3 s.f.)

This shows fairly strong positive correlation between the pairs of ranks. This suggests that the more goals a team scores, the higher its league position is likely to be.

Pearson

7 There are no tied ranks. The table shows d and  $d^2$  for each pair of ranks:

| rq | ľ T | d     | $d^2$ |
|----|-----|-------|-------|
| 1  | 1   | 0     | 0     |
| 2  | 2   | 0     | 0     |
| 3  | 5   | -2    | 4     |
| 4  | 6   | -2    | 4     |
| 5  | 4   | 1     | 1     |
| 6  | 3   | 3     | 9     |
| 7  | 8   | -1    | 1     |
| 8  | 7   | 1     | 1     |
|    |     | Total | 20    |

$$r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 20}{8(8^2 - 1)} = 1 - 0.23809... = 0.762$$
(3 s.f.)

There is fairly strong positive correlation between the pairs of ranks. This suggests the trainee vet is rating the rabbits for overall health in a similar way to the qualified vet.

- 8 a The marks are discrete values drawn from a specified scale in order to rank the competitors.
  - **b** The table shows the ranks of each judge and d and  $d^2$  for each pair of ranks:

| $J_1$ | $J_2$ | <b>r</b> J1 | ľJ2 | d     | <i>d</i> <sup>2</sup> |
|-------|-------|-------------|-----|-------|-----------------------|
| 7.8   | 8.1   | 4           | 4   | 0     | 0                     |
| 6.6   | 6.8   | 9           | 8   | 1     | 1                     |
| 7.3   | 8.2   | 7           | 3   | 4     | 16                    |
| 7.4   | 7.5   | 6           | 7   | -1    | 1                     |
| 8.4   | 8.0   | 3           | 5   | -2    | 4                     |
| 6.5   | 6.7   | 10          | 9   | 1     | 1                     |
| 8.9   | 8.5   | 1           | 1   | 0     | 0                     |
| 8.5   | 8.3   | 2           | 2   | 0     | 0                     |
| 6.7   | 6.6   | 8           | 10  | -2    | 4                     |
| 7.7   | 7.8   | 5           | 6   | -1    | 1                     |
|       |       |             |     | Total | 28                    |

$$r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 28}{10(10^2 - 1)} = 1 - 0.16969... = 0.830$$
(3 s.f.)

There is a strong positive correlation between the marks, hence the two judges agree well.

#### **INTERNATIONAL A LEVEL**

# **Statistics 3** Solution Bank



- 8 c Now there is a tied rank for the value 7.7 for competitors *A* and *J*, and we should give each of the equal values a rank equal to the average of their ranks, which would be 4.5.
- 9 a The scores are used to rank the participants, and are not likely to be normally distributed.
  - **b** The table shows the ranks of each judge (using averages where scores are tied in rank) and d and  $d^2$  for each pair of ranks:

| $J_1$ | $J_2$ | <b>r</b> J1 | r <sub>J2</sub> | d     | $d^2$ |
|-------|-------|-------------|-----------------|-------|-------|
| 4.5   | 5.2   | 1           | 5               | _4    | 16    |
| 5.1   | 4.8   | 2           | 1               | 1     | 1     |
| 5.2   | 4.9   | 3.5         | 2               | 1.5   | 2.25  |
| 5.2   | 5.1   | 3.5         | 4               | -0.5  | 0.25  |
| 5.4   | 5.0   | 5           | 3               | 2     | 4     |
| 5.7   | 5.3   | 6           | 6               | 0     | 0     |
| 5.8   | 5.4   | 7           | 7               | 0     | 0     |
|       |       |             |                 | Total | 23.5  |

$$r_s = 1 - \frac{6\sum d^2}{n(n^2 - 1)} = 1 - \frac{6 \times 23.5}{7(7^2 - 1)} = 1 - 0.41964... = 0.580 (3 \text{ s.f.})$$

c Both show positive correlation, but the judges agree more on the second dive.